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1. INTRODUCTION

In [4], J. L. Joly defines the rectangular constant of a real normed linear
space E, of dimension >>2, as the number

wE) = sup Uxl 4 1Ey /A x 4y 1D,

where x | y means that x € E is orthogonal to y € E in the Birkhoff sense
(B-orthogonal) [1, 2L, ie, i x| <|lx + Ay, VAER.
Joly proves the following properties of p(E):
For every E, 212 < w(E) < 3.
If £ is a prehilbert space, then u(F) = 21/2,
If u(E) = 212, then B-orthogonality is symmetric.
As a consequence of the above fact and of a weli-known resuit of

James [3], if p(F) = 2¥/2 and if E is of dimension >3, then E is prehilbert
space.

The purpose of this paper is to solve a problem posed by Joly in his work:
“If E is a real normed linear space of dimension 2 and if p(E) = 2V/2, then
E is a prehilbert space.”

From now on we shall suppose that E is a real normed linear space of
dimension 2 (i.e., R? with a norm), with an orientation v, and we shall use
the following notation:

S={xeE|x]=1},B={xecE|x| <1},
Ss={p=x+yxyeS x Ly [xy] =,
S ={p =x—yix,yeS, x Ly [xy] =k
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The key result in [4] is that the area of the set B, , internal to the curve
S; , is twice the area of the set B. To obtain this result, Joly gives a suitable
parametrization of S;, obtained from the fact that S is the boundary of
a convex body and, therefore, it admits the following two parametrizations:

1. Let / be the length of S and ¢ a point of S. Then, a possible para-
metrization of S is given by

Ae[0,0) = x(A) = (x4(A), x2(A)) €55,
where x() is the point of S whose distance to ¢, measured over S with the

orientation », is equal to A.
2. Given n €S, the function

€0, 2m) — y(0) = (3:1(0), 7)) €5,

where y(0) is the point of § whose angle with %, measured with the orientation
v, is equal to 6, is also a parametrization of S.

Then, if for a given £ € S, we take n €S as the first point such that £ is
B-orthogonal to 5 which we meet when S is described with the orientation v,
the following parametrization can be given for S; :

o=A+0€]0,27 + 1) — p(o) = x() + ¥(0) €51,

where x(}), y(6) are such that x(2) 1 (0), [x(X), (@] = v.

The validity of the above result and the facts that S, is rectifiable and that
W(E) = 212 implies S; = 21738 = S;’, has been discussed in [4].

Finally, Joly proves that S; = 225 = S}’ implies the symmetry of
B-orthogonality.

2. Previous LEMMAS

To obtain a proof of Joly’s conjecture we need the following results added
to those of [4].

LemMa 1. If B-orthogonality of E is symmetric, the areas of the parallelo-
grams determined by any two vectors x, y € S, such that x |y, are constant.

Proof. The area of the parallelogram determined by x = (xy, x»),
¥y =(y1,¥s) 18 | X1y, — X3 p; |. Therefore, it suffices to prove that the
function '

A: 5 €0,2m 4 1) — A(o) = x;(A) ya(0) — x2(A) y1(6)

is constant.
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Since the functions (7 = 1, 2)
gel0, 2z + 1) — x, (), g €0, 2m + 1) — y {0

are of bounded variation, we only need to show
o o
[ = [ a0 dna® — ) dys(6);

[ 10 dn®) — 310 A = 0

foreveryo' =X +6,¢" =X +0,in [0, 27 + ).

For this purpose, let {5, , oy ,..., 0,}, With 6; = A; -+ §;, be any partition
of [o’, ¢"]. Since B-orthogonality of FE is symmetric, x(A;) 1 y(8,) and
¥(8,) 1 x(}\,). Hence, there exist s;€[A,_;, A], ;€ [0, 0], such that

()1 e(8:) — y2(0:-9)] — x2(s)1[3:(8) — 70, )] =0
Yot )6(A) — x:(A; )] — »(E)fxa(A) — x(2,)] = 0

and the lemma follows.

Lemma 2. If w(E) = 222, then x +y | x —y for every x, y€ S such
that x 1 y.

Proof. let u(E) = 2Y/2 and let x, y €S, such that x | y. The inequality
hx+yl<lx+y+tx—pl VieR

casily follows from || x 4+ y | = 212, which is a consequence of Joly’s result
§; = 2'2S, and from

@+ +A—=Pllx +y+ilx =y <p(E) = 212
LemMma 3. If w(E) =22 and if X', V', x", y" €S are such that x' | ¥,
X Ly 5] = ¥, 5", then
A, x") = A, ¥,
where A(x, y), with x, y € E\{0}, denotes the area of the set
{ax + by:a, be R Jax + byl < 1},

Proof. Leto’ = XN +&,06" =X + 0", such that ¥’ = x(X), y' = p{(0"),
xh' — x(All)’ y” [ y(aﬂ).
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From the fact that w(E) = 272, it follows that S; = 21/2S = §’, and hence

2A(x/ + yl’ xll + yll)

I

4 [ {pr(o) dplo) — pila) dpy(o)
—1] O dx0) — %) D) + 4 [ " ((0) dn8) — 1o6) dyy(6)

+3f " 00 d0) — 5N O} + 4 (10 dn) — 4O

As in the proof of Lemma 1, the two last addends are null. The two first
are, respectively, A(x’, x"), A(y’, »"). Thus we have

240 + ¥, x" 4 y") = A, x") + AV, ¥). ¢y

Analogously, from the fact that x" | —y, x" 1 —y", ¥/, —y'] =
[x”, —y"], it follows that

24(x" — ¥, x" — ¥") = A, X"y + A(—y', —") = A, x") + AV, V).
@)
The above lemma implies x" +y" 1 x" — ¥, x" + " 1 x”" — »". From
this and the fact that [x" + ', x" — »'] = [x" 4+ »", x" — »"], we obtain
ZA(x” x/l) — A(xl _l_ y’, x” _!_ yll) + A(x7 o yl, x” — y”). (3)
Finally, the lemma follows from (1), (2), (3).

3. MAIN REsuLT

THEOREM. If u(E) = 272, then E is a prehilbert space.

Proof. Since affine transformations preserve B-orthogonality, we can
suppose that (1, 0), (0, D e S, (1,0) L (0, 1).

Let x(8) = (x;(6), x5(0)) be the point of S which forms with (1, 0) the
angle #, measured in the positive sense, and let y(8) = (p,(9), y»(6)) be the
unigue (consequence of Lemma 3) point of S such that x(6) 1 »(0),

If we prove that

j: xy dxy + J:Jﬁ dy, = _07 f: Xp dxy + J: Vo dy, =0
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for every 6 € [0, 27r), then
x2(0) +y20) = 1, x,2(0) + 3%(0) = 1.
Combining these equalities with (Lemma 1)

x,(0) Ya(0) — x5(0) 31(0) = 1,
we find

[x1(8) — po(OF + [x:(0) + 3(O)F =0,

from which it follows that S is the circle x® + x,* = 1.
To prove that

[ [}
[ wedut [ edn=0 k=12,

L)
let

S a0 — %0 -+ 78 — 126,

F=1

be a sum of Riemann sums for such integrals. If we choose s;, 1, €[8,_;, 8,1
so that

x(0;) — x(0;_y) = || x(8,) — x(0:_)l y(s),
y(0) — y(0:_) = — | ¥(0) — y(0.)| x(2),

the absolute value of the above sum of Riemann sums is less than or equal to

)

S 11569 — yGs) — 1 x(8) — x(6,_)] |

i=1

% | x6(0) — x0(0,_ D! | y(05) — y1(0;_)]
[ x(6;) — (8.l | () — ¥(0,-Dll

< i Hw(05) — »(0:-)) — | x(8) — x(8; )]l |, ©)

since S is in the square with vertices (4-1, 4-1), and thus ||(a, 8)|] > max{a, b}.
Consequently, it remains to prove that the last sum is as small as we wish
if we choose the partition {8, , 8, ..., 8,} of [0, 8] sufficiently fine.
Lemma 3 tells us that

o” 8"
J;, {xy dxy — Xg dx;} = L, {1 dys — yo dys}

for every & and #". Let {6,,6,,..., 8,} be a partition of [, "] and let
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8;,t;€[0;_1, 0] be as in (4). The corresponding Riemann sum of the first
integral is

Z {x1(5)[x2(0) — x2(0:D] — xo(8)[x1(0,) — x:1(0;_0)]}
F==1
= Z [ %(0:) — x(0:_DIl [x1(55) yalis:) — xa(s5) ya(s5)]
i=1
= Z | x(0;) — x(6;_pIl.
i=1
Analogously, the Riemann sum of the second integral is
2 (0 — (@)l
=1
Therefore, for every e > 0 there exists a partition P, of [#’, 8”] such that,
for every P = {6,, 8, ,..., 0} finer than P,

n

>,

=1
where

< €,

(6)
D; = || x(0;) — x(0;_)ll — | y(0:) — y(0;-)l.

To show the sum in (5) can be made small, suppose P, is a partition of
[0, 8] chosen so that, if P = {6,, 0, ,..., 8,} is finer than P, ,

n

2, D;

i=1

> D,+3 D;
P, P_

< g

where P, (P_) denotes the set of addends D; which are =0 (<0).
By virtue of (6) we can refine P_(P,) so that the sum of D,’s relative to
it is less than e. Consequently,
Y D; < 2e, (Z D, < ze),
Py P_
and therefore

n

Y Dl =Y D~ Y D < 4e

P, P_
for every P finer than P, .
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