The Rectangular Constant for Two-Dimensional Spaces

MIGUEL DEL RÍO AND CARLOS BENÍTEZ

Departamento de Análisis Matemático, Universidad de Santiago, Santiago de Compostela, Spain

Communicated by Oved Shisha

Received June 5, 1975

1. INTRODUCTION

In [4], J. L. Joly defines the rectangular constant of a real normed linear space E, of dimension ≥ 2 , as the number

$$\mu(E) = \sup_{x \perp y} (||x|| + ||y||)/(||x + y||),$$

where $x \perp y$ means that $x \in E$ is orthogonal to $y \in E$ in the Birkhoff sense (B-orthogonal) [1, 2], i.e., $||x|| \leq ||x + \lambda y||, \forall \lambda \in \mathbb{R}$.

Joly proves the following properties of $\mu(E)$:

For every E, $2^{1/2} \leq \mu(E) \leq 3$.

If E is a prehilbert space, then $\mu(E) = 2^{1/2}$.

If $\mu(E) = 2^{1/2}$, then B-orthogonality is symmetric.

As a consequence of the above fact and of a well-known result of James [3], if $\mu(E) = 2^{1/2}$ and if E is of dimension ≥ 3 , then E is prehilbert space.

The purpose of this paper is to solve a problem posed by Joly in his work: "If E is a real normed linear space of dimension 2 and if $\mu(E) = 2^{1/2}$, then E is a prehilbert space."

From now on we shall suppose that E is a real normed linear space of dimension 2 (i.e., \mathbb{R}^2 with a norm), with an orientation ν , and we shall use the following notation:

$$S = \{x \in E : ||x|| = 1\}, B = \{x \in E : ||x|| \le 1\},\$$

$$S_1 = \{p = x + y : x, y \in S, x \perp y, [x, y] = \nu\},\$$

$$S_1' = \{p' = x - y : x, y \in S, x \perp y, [x, y] = \nu\}.$$

15

Copyright © 1977 by Academic Press, Inc.

All rights of reproduction in any form reserved.

The key result in [4] is that the area of the set B_1 , internal to the curve S_1 , is twice the area of the set *B*. To obtain this result, Joly gives a suitable parametrization of S_1 , obtained from the fact that *S* is the boundary of a convex body and, therefore, it admits the following two parametrizations:

1. Let *l* be the length of S and ξ a point of S. Then, a possible parametrization of S is given by

$$\lambda \in [0, l) \to x(\lambda) = (x_1(\lambda), x_2(\lambda)) \in S,$$

where $x(\lambda)$ is the point of S whose distance to ξ , measured over S with the orientation ν , is equal to λ .

2. Given $\eta \in S$, the function

$$\theta \in [0, 2\pi) \rightarrow y(\theta) = (y_1(\theta), y_2(\theta)) \in S,$$

where $y(\theta)$ is the point of S whose angle with η , measured with the orientation ν , is equal to θ , is also a parametrization of S.

Then, if for a given $\xi \in S$, we take $\eta \in S$ as the first point such that ξ is B-orthogonal to η which we meet when S is described with the orientation ν , the following parametrization can be given for S_1 :

$$\sigma = \lambda + \theta \in [0, 2\pi + l) \to p(\sigma) = x(\lambda) + y(\theta) \in S_1,$$

where $x(\lambda)$, $y(\theta)$ are such that $x(\lambda) \perp y(\theta)$, $[x(\lambda), y(\theta)] = v$.

The validity of the above result and the facts that S_1 is rectifiable and that $\mu(E) = 2^{1/2}$ implies $S_1 = 2^{1/2}S = S_1'$, has been discussed in [4].

Finally, Joly proves that $S_1 = 2^{1/2}S = S_1'$ implies the symmetry of B-orthogonality.

2. Previous Lemmas

To obtain a proof of Joly's conjecture we need the following results added to those of [4].

LEMMA 1. If B-orthogonality of E is symmetric, the areas of the parallelograms determined by any two vectors $x, y \in S$, such that $x \perp y$, are constant.

Proof. The area of the parallelogram determined by $x = (x_1, x_2)$, $y = (y_1, y_2)$ is $|x_1y_2 - x_2y_1|$. Therefore, it suffices to prove that the function

$$A: \sigma \in [0, 2\pi + l) \to A(\sigma) = x_1(\lambda) y_2(\theta) - x_2(\lambda) y_1(\theta)$$

is constant.

Since the functions (i = 1, 2)

 $\sigma \in [0, 2\pi + l) \rightarrow x_i(\lambda), \quad \sigma \in [0, 2\pi + l) \rightarrow y_i(\theta)$

are of bounded variation, we only need to show

$$\int_{\sigma'}^{\sigma''} dA = \int_{\theta'}^{\theta''} \{ x_1(\lambda) \, dy_2(\theta) - x_2(\lambda) \, dy_1(\theta) \}$$
$$+ \int_{\lambda'}^{\lambda''} \{ y_2(\theta) \, dx_1(\lambda) - y_1(\theta) \, dx_2(\lambda) \} = 0$$

for every $\sigma' = \lambda' + \theta', \, \sigma'' = \lambda'' + \theta''$, in $[0, 2\pi + l)$.

For this purpose, let $\{\sigma_0, \sigma_1, ..., \sigma_n\}$, with $\sigma_i = \lambda_i + \theta_i$, be any partition of $[\sigma', \sigma'']$. Since B-orthogonality of E is symmetric, $x(\lambda_i) \perp y(\theta_i)$ and $y(\theta_i) \perp x(\lambda_i)$. Hence, there exist $s_i \in [\lambda_{i-1}, \lambda_i]$, $t_i \in [\theta_{i-1}, \theta_i]$, such that

$$\begin{aligned} x_1(s_i)[y_2(\theta_i) - y_2(\theta_{i-1})] - x_2(s_i)][y_1(\theta_i) - y_1(\theta_{i-1})] &= 0\\ y_2(t_i)[x_1(\lambda_i) - x_1(\lambda_{i-1})] - y_1(t_i)[x_2(\lambda_i) - x_2(\lambda_{i-1})] &= 0 \end{aligned}$$

and the lemma follows.

LEMMA 2. If $\mu(E) = 2^{1/2}$, then $x + y \perp x - y$ for every $x, y \in S$ such that $x \perp y$.

Proof. Let $\mu(E) = 2^{1/2}$ and let $x, y \in S$, such that $x \perp y$. The inequality

$$||x + y|| \leq ||x + y + t(x - y)||, \quad \forall t \in \mathbb{R},$$

easily follows from $||x + y|| = 2^{1/2}$, which is a consequence of Joly's result $S_1 = 2^{1/2}S$, and from

$$((1+t)+(1-t))/||x+y+t(x-y)|| \leq \mu(E) = 2^{1/2}.$$

LEMMA 3. If $\mu(E) = 2^{1/2}$ and if $x', y', x'', y'' \in S$ are such that $x' \perp y', x'' \perp y'', [x', y'] = [x'', y'']$, then

$$A(x', x'') = A(y', y''),$$

where A(x, y), with $x, y \in E \setminus \{0\}$, denotes the area of the set

$$\{ax + by: a, b \in \mathbb{R}^+, \|ax + by\| \leq 1\}.$$

Proof. Let $\sigma' = \lambda' + \theta'$, $\sigma'' = \lambda'' + \theta''$, such that $x' = x(\lambda')$, $y' = y(\theta')$, $x'' = x(\lambda'')$, $y'' = y(\theta'')$.

From the fact that $\mu(E) = 2^{1/2}$, it follows that $S_1 = 2^{1/2}S = S_1'$, and hence 2A(x' + y', x'' + y'') $= \frac{1}{2} \int_{\sigma'}^{\sigma''} \{p_1(\sigma) \, dp_2(\sigma) - p_2(\sigma) \, dp_1(\sigma)\}$ $= \frac{1}{2} \int_{\lambda'}^{\lambda''} \{x_1(\lambda) \, dx_2(\lambda) - x_2(\lambda) \, dx_1(\lambda)\} + \frac{1}{2} \int_{\theta'}^{\theta''} \{y_1(\theta) \, dy_2(\theta) - y_2(\theta) \, dy_1(\theta)\}$ $+ \frac{1}{2} \int_{\theta'}^{\theta''} \{x_1(\lambda) \, dy_2(\theta) - x_2(\lambda) \, dy_1(\theta)\} + \frac{1}{2} \int_{\lambda'}^{\lambda''} \{y_1(\theta) \, dx_2(\lambda) - y_2(\theta) \, dx_1(\lambda)\}.$

As in the proof of Lemma 1, the two last addends are null. The two first are, respectively, A(x', x''), A(y', y''). Thus we have

$$2A(x' + y', x'' + y'') = A(x', x'') + A(y', y'').$$
(1)

Analogously, from the fact that $x' \perp -y'$, $x'' \perp -y''$, [x', -y'] = [x'', -y''], it follows that

$$2A(x' - y', x'' - y'') = A(x', x'') + A(-y', -y'') = A(x', x'') + A(y', y'').$$
(2)

The above lemma implies $x' + y' \perp x' - y'$, $x'' + y'' \perp x'' - y''$. From this and the fact that [x' + y', x' - y'] = [x'' + y'', x'' - y''], we obtain

$$2A(x', x'') = A(x' + y', x'' + y'') + A(x' - y', x'' - y'').$$
(3)

Finally, the lemma follows from (1), (2), (3).

3. MAIN RESULT

THEOREM. If $\mu(E) = 2^{1/2}$, then E is a prehilbert space.

Proof. Since affine transformations preserve B-orthogonality, we can suppose that $(1, 0), (0, 1) \in S, (1, 0) \perp (0, 1)$.

Let $x(\theta) = (x_1(\theta), x_2(\theta))$ be the point of S which forms with (1, 0) the angle θ , measured in the positive sense, and let $y(\theta) = (y_1(\theta), y_2(\theta))$ be the *unique* (consequence of Lemma 3) point of S such that $x(\theta) \perp y(\theta)$, $[x(\theta), y(\theta)] = [(1, 0), (0, 1)].$

If we prove that

$$\int_0^\theta x_1 \, dx_1 + \int_0^\theta y_1 \, dy_1 = 0, \qquad \int_0^\theta x_2 \, dx_2 + \int_0^\theta y_2 \, dy_2 = 0$$

for every $\theta \in [0, 2\pi)$, then

$$x_1^2(\theta) + y_1^2(\theta) = 1, \qquad x_2^2(\theta) + y_2^2(\theta) = 1.$$

Combining these equalities with (Lemma 1)

$$x_1(\theta) y_2(\theta) - x_2(\theta) y_1(\theta) = 1,$$

we find

$$[x_1(\theta) - y_2(\theta)]^2 + [x_2(\theta) + y_1(\theta)]^2 = 0,$$

from which it follows that S is the circle $x_1^2 + x_2^2 = 1$.

To prove that

$$\int_0^\theta x_k \, dx_k + \int_0^\theta y_k \, dy_k = 0 \qquad (k = 1, 2),$$

let

$$\sum_{i=1}^{n} \{ x_{k}(t_{i}) [x_{k}(\theta_{i}) - x_{k}(\theta_{i-1})] + y_{k}(s_{i}) [y_{k}(\theta_{i}) - y_{k}(\theta_{i-1})] \}$$

be a sum of Riemann sums for such integrals. If we choose s_i , $t_i \in [\theta_{i-1}, \theta_i]$ so that

$$\begin{aligned} x(\theta_i) - x(\theta_{i-1}) &= \| x(\theta_i) - x(\theta_{i-1}) \| y(s_i), \\ y(\theta_i) - y(\theta_{i-1}) &= - \| y(\theta_i) - y(\theta_{i-1}) \| x(t_i), \end{aligned}$$
(4)

the absolute value of the above sum of Riemann sums is less than or equal to

$$\sum_{i=1}^{n} |\| y(\theta_{i}) - y(\theta_{i-1})\| - \| x(\theta_{i}) - x(\theta_{i-1})\| | \\ \times \frac{|x_{k}(\theta_{i}) - x_{k}(\theta_{i-1})| |y_{k}(\theta_{i}) - y_{k}(\theta_{i-1})|}{\| x(\theta_{i}) - x(\theta_{i-1})\| \| y(\theta_{i}) - y(\theta_{i-1})\|} \\ \leqslant \sum_{i=1}^{n} |\| y(\theta_{i}) - y(\theta_{i-1})\| - \| x(\theta_{i}) - x(\theta_{i-1})\| |,$$
(5)

since S is in the square with vertices $(\pm 1, \pm 1)$, and thus $||(a, b)|| \ge \max\{a, b\}$.

Consequently, it remains to prove that the last sum is as small as we wish if we choose the partition $\{\theta_0, \theta_1, ..., \theta_n\}$ of $[0, \theta]$ sufficiently fine.

Lemma 3 tells us that

$$\int_{\theta'}^{\theta''} \{ x_1 \, dx_2 - x_2 \, dx_1 \} = \int_{\theta'}^{\theta''} \{ y_1 \, dy_2 - y_2 \, dy_1 \}$$

for every θ' and θ'' . Let $\{\theta_0, \theta_1, ..., \theta_n\}$ be a partition of $[\theta', \theta'']$ and let

 s_i , $t_i \in [\theta_{i-1}, \theta_i]$ be as in (4). The corresponding Riemann sum of the first integral is

$$\sum_{i=1}^{n} \{x_1(s_i)[x_2(\theta_i) - x_2(\theta_{i-1})] - x_2(s_i)[x_1(\theta_i) - x_1(\theta_{i-1})]\}$$
$$= \sum_{i=1}^{n} ||x(\theta_i) - x(\theta_{i-1})|| [x_1(s_i) y_2(s_i) - x_2(s_i) y_1(s_i)]$$
$$= \sum_{i=1}^{n} ||x(\theta_i) - x(\theta_{i-1})||.$$

Analogously, the Riemann sum of the second integral is

$$\sum_{i=1}^n \| y(\theta_i) - y(\theta_{i-1}) \|.$$

Therefore, for every $\epsilon > 0$ there exists a partition P_{ϵ} of $[\theta', \theta'']$ such that, for every $P = \{\theta_0, \theta_1, ..., \theta_n\}$ finer than P_{ϵ} ,

$$\Big|\sum_{i=1}^n D_i\Big| < \epsilon, \tag{6}$$

where

$$D_{i} = \| x(\theta_{i}) - x(\theta_{i-1})\| - \| y(\theta_{i}) - y(\theta_{i-1})\|.$$

To show the sum in (5) can be made small, suppose P_{ϵ} is a partition of $[0, \theta]$ chosen so that, if $P = \{\theta_0, \theta_1, ..., \theta_n\}$ is finer than P_{ϵ} ,

$$\Big|\sum\limits_{i=1}^n D_i\Big| = \Big|\sum\limits_{P_+} D_i + \sum\limits_{P_-} D_i\Big| < \epsilon,$$

where $P_{+}(P_{-})$ denotes the set of addends D_i which are ≥ 0 (<0).

By virtue of (6) we can refine $P_{-}(P_{+})$ so that the sum of D_{i} 's relative to it is less than ϵ . Consequently,

$$\sum\limits_{P_+} D_i < 2\epsilon, \qquad iggl(\sum\limits_{P_-} D_i < 2\epsiloniggr),$$

and therefore

$$\sum\limits_{i=1}^n \mid D_i \mid = \sum\limits_{P_+} D_i - \sum\limits_{P_-} D_i < 4\epsilon$$

for every P finer than P_{ϵ} .

References

- 1. G. BIRKHOFF, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172.
- R. C. JAMES, Orthogonality and linear functionals in normed linear spaces, *Trans. Amer. Math. Soc.* 61 (1947), 265–292.
- R. C. JAMES, Inner products in normed linear spaces, Bull. Amer. Math. Soc. 53 (1947), 559–566.
- J. L. JOLY, Caractérisation d'espaces hilbertiens au moyen de la constante rectangle, J. Approximation Theory 2 (1969), 301-311.