The Rectangular Constant for Two-Dimensional Spaces

Miguel del Río and Carlos Benítez
Departamento de Anälisis Matemático, Universidad de Santiago, Santiago de Compostela, Spain
Communicated by Oved Shisha

Received June 5, 1975

1. Introduction

In [4], J. L. Joly defines the rectangular constant of a real normed linear space E, of dimension $\geqslant 2$, as the number

$$
\mu(E)=\sup _{x \perp y}(\|x\|+\|y\|) /(\|x+y\|),
$$

where $x \perp y$ means that $x \in E$ is orthogonal to $y \in E$ in the Birkhoff sense (B-orthogonal) [1, 2], i.e., $\|x\| \leqslant\|x+\lambda y\|, \forall \lambda \in \mathbb{R}$.

Joly proves the following properties of $\mu(E)$:
For every $E, 2^{1 / 2} \leqslant \mu(E) \leqslant 3$.
If E is a prehilbert space, then $\mu(E)=2^{1 / 2}$.
If $\mu(E)=2^{1 / 2}$, then B-orthogonality is symmetric.
As a consequence of the above fact and of a well-known result of James [3], if $\mu(E)=2^{1 / 2}$ and if E is of dimension $\geqslant 3$, then E is prehilbert space.

The purpose of this paper is to solve a problem posed by Joly in his work: "If E is a real normed linear space of dimension 2 and if $\mu(E)=2^{1 / 2}$, then E is a prehilbert space."

From now on we shall suppose that E is a real normed linear space of dimension 2 (i.e., \mathbb{R}^{2} with a norm), with an orientation ν, and we shall use the following notation:

$$
\begin{aligned}
S & =\{x \in E:\|x\|=1\}, B=\{x \in E:\|x\| \leqslant 1\}, \\
S_{1} & =\{p=x+y: x, y \in S, x \perp y,[x, y]=\nu\}, \\
S_{1}^{\prime} & =\left\{p^{\prime}=x-y: x, y \in S, x \perp y,[x, y]=\nu\right\} .
\end{aligned}
$$

The key result in [4] is that the area of the set B_{1}, internal to the curve S_{1}, is twice the area of the set B. To obtain this result, Joly gives a suitable parametrization of S_{1}, obtained from the fact that S is the boundary of a convex body and, therefore, it admits the following two parametrizations:

1. Let l be the length of S and ξ a point of S. Then, a possible parametrization of S is given by

$$
\lambda \in[0, l) \rightarrow x(\lambda)=\left(x_{1}(\lambda), x_{2}(\lambda)\right) \in S,
$$

where $x(\lambda)$ is the point of S whose distance to ξ, measured over S with the orientation ν, is equal to λ.
2. Given $\eta \in S$, the function

$$
\theta \in[0,2 \pi) \rightarrow y(\theta)=\left(y_{1}(\theta), y_{2}(\theta)\right) \in S,
$$

where $y(\theta)$ is the point of S whose angle with η, measured with the orientation ν, is equal to θ, is also a parametrization of S.

Then, if for a given $\xi \in S$, we take $\eta \in S$ as the first point such that ξ is B-orthogonal to η which we meet when S is described with the orientation ν, the following parametrization can be given for S_{1} :

$$
\sigma=\lambda+\theta \in[0,2 \pi+l) \rightarrow p(\sigma)=x(\lambda)+y(\theta) \in S_{1},
$$

where $x(\lambda), y(\theta)$ are such that $x(\lambda) \perp y(\theta),[x(\lambda), y(\theta)]=\nu$.
The validity of the above result and the facts that S_{1} is rectifiable and that $\mu(E)=2^{1 / 2}$ implies $S_{1}=2^{1 / 2} S=S_{1}^{\prime}$, has been discussed in [4].

Finally, Joly proves that $S_{1}=2^{1 / 2} S=S_{1}{ }^{\prime}$ implies the symmetry of B-orthogonality.

2. Previous Lemmas

To obtain a proof of Joly's conjecture we need the following results added to those of [4].

Lemma 1. If B -orthogonality of E is symmetric, the areas of the parallelograms determined by any two vectors $x, y \in S$, such that $x \perp y$, are constant.

Proof. The area of the parallelogram determined by $x=\left(x_{1}, x_{2}\right)$, $y=\left(y_{1}, y_{2}\right)$ is $\left|x_{1} y_{2}-x_{2} y_{1}\right|$. Therefore, it suffices to prove that the function

$$
A: \sigma \in[0,2 \pi+l) \rightarrow A(\sigma)=x_{1}(\lambda) y_{2}(\theta)-x_{2}(\lambda) y_{1}(\theta)
$$

is constant.

Since the functions ($i=1,2$)

$$
\sigma \in[0,2 \pi+l) \rightarrow x_{i}(\lambda), \quad \sigma \in[0,2 \pi+l) \rightarrow y_{i}(\theta)
$$

are of bounded variation, we only need to show

$$
\begin{aligned}
\int_{\sigma^{\prime}}^{\sigma^{\prime \prime}} d A= & \int_{\theta^{\prime}}^{\theta^{\prime \prime}}\left\{x_{1}(\lambda) d y_{2}(\theta)-x_{2}(\lambda) d y_{1}(\theta)\right\} \\
& +\int_{\lambda^{\prime}}^{\lambda^{\prime \prime}}\left\{y_{2}(\theta) d x_{1}(\lambda)-y_{1}(\theta) d x_{2}(\lambda)\right\}=0
\end{aligned}
$$

for every $\sigma^{\prime}=\lambda^{\prime}+\theta^{\prime}, \sigma^{\prime \prime}=\lambda^{\prime \prime}+\theta^{\prime \prime}$, in $[0,2 \pi+\eta)$.
For this purpose, let $\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right\}$, with $\sigma_{i}=\lambda_{i}+\theta_{i}$, be any partition of $\left[\sigma^{\prime}, \sigma^{\prime \prime}\right]$. Since B-orthogonality of E is symmetric, $x\left(\lambda_{i}\right) \perp y\left(\theta_{i}\right)$ and $y\left(\theta_{i}\right) \perp x\left(\lambda_{i}\right)$. Hence, there exist $s_{i} \in\left[\lambda_{i-1}, \lambda_{i}\right], t_{i} \in\left[\theta_{i-1}, \theta_{i}\right]$, such that

$$
\begin{aligned}
\left.x_{1}\left(s_{i}\right)\left[y_{2}\left(\theta_{i}\right)-y_{2}\left(\theta_{i-1}\right)\right]-x_{2}\left(s_{i}\right)\right]\left[y_{1}\left(\theta_{i}\right)-y_{1}\left(\theta_{i-1}\right)\right] & =0 \\
y_{2}\left(t_{i}\right)\left[x_{1}\left(\lambda_{i}\right)-x_{1}\left(\lambda_{i-1}\right)\right]-y_{1}\left(t_{i}\right)\left[x_{2}\left(\lambda_{i}\right)-x_{2}\left(\lambda_{i-1}\right)\right] & =0
\end{aligned}
$$

and the lemma follows.

Lemma 2. If $\mu(E)=2^{1 / 2}$, then $x+y \perp x-y$ for every $x, y \in S$ such that $x \perp y$.

Proof. Let $\mu(E)=2^{1 / 2}$ and let $x, y \in S$, such that $x \perp y$. The inequality

$$
\|x+y\| \leqslant\|x+y+t(x-y)\|, \quad \forall t \in \mathbb{R}
$$

easily follows from $\|x+y\|=2^{1 / 2}$, which is a consequence of Joly's result $S_{1}=2^{1 / 2} S$, and from

$$
((1+t)+(1-t)) /\|x+y+t(x-y)\| \leqslant \mu(E)=2^{1 / 2}
$$

Lemma 3. If $\mu(E)=2^{1 / 2}$ and if $x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime} \in S$ are such that $x^{\prime} \perp y^{\prime}$, $x^{\prime \prime} \perp y^{\prime \prime},\left[x^{\prime}, y^{\prime}\right]=\left[x^{\prime \prime}, y^{\prime \prime}\right]$, then

$$
A\left(x^{\prime}, x^{\prime \prime}\right)=A\left(y^{\prime}, y^{\prime \prime}\right)
$$

where $A(x, y)$, with $x, y \in E \backslash\{0\}$, denotes the area of the set

$$
\left\{a x+b y: a, b \in \mathbb{R}^{+},\|a x+b y\| \leqslant 1\right\}
$$

Proof. Let $\sigma^{\prime}=\lambda^{\prime}+\theta^{\prime}, \sigma^{\prime \prime}=\lambda^{\prime \prime}+\theta^{\prime \prime}$, such that $x^{\prime}=x\left(\lambda^{\prime}\right), y^{\prime}=y\left(\theta^{\prime}\right)$, $x^{\prime \prime}=x\left(\lambda^{\prime \prime}\right), y^{\prime \prime}=y\left(\theta^{\prime \prime}\right)$.

From the fact that $\mu(E)=2^{1 / 2}$, it follows that $S_{1}=2^{1 / 2} S=S_{1}{ }^{\prime}$, and hence $2 A\left(x^{\prime}+y^{\prime}, x^{\prime \prime}+y^{\prime \prime}\right)$

$$
\begin{aligned}
= & \frac{1}{2} \int_{\sigma^{\prime}}^{\sigma^{\prime \prime}}\left\{p_{1}(\sigma) d p_{2}(\sigma)-p_{2}(\sigma) d p_{1}(\sigma)\right\} \\
= & \frac{1}{2} \int_{\lambda^{\prime}}^{\lambda^{\prime \prime}}\left\{x_{1}(\lambda) d x_{2}(\lambda)-x_{2}(\lambda) d x_{1}(\lambda)\right\}+\frac{1}{2} \int_{\theta^{\prime}}^{\theta^{\prime \prime}}\left\{y_{1}(\theta) d y_{2}(\theta)-y_{2}(\theta) d y_{1}(\theta)\right\} \\
& +\frac{1}{2} \int_{\theta^{\prime}}^{\theta^{\prime \prime}}\left\{x_{1}(\lambda) d y_{2}(\theta)-x_{2}(\lambda) d y_{1}(\theta)\right\}+\frac{1}{2} \int_{\lambda^{\prime}}^{\lambda^{\prime \prime}}\left\{y_{1}(\theta) d x_{2}(\lambda)-y_{2}(\theta) d x_{1}(\lambda)\right\}
\end{aligned}
$$

As in the proof of Lemma 1, the two last addends are null. The two first are, respectively, $A\left(x^{\prime}, x^{\prime \prime}\right), A\left(y^{\prime}, y^{\prime \prime}\right)$. Thus we have

$$
\begin{equation*}
2 A\left(x^{\prime}+y^{\prime}, x^{\prime \prime}+y^{\prime \prime}\right)=A\left(x^{\prime}, x^{\prime \prime}\right)+A\left(y^{\prime}, y^{\prime \prime}\right) \tag{1}
\end{equation*}
$$

Analogously, from the fact that $x^{\prime} \perp-y^{\prime}, x^{\prime \prime} \perp-y^{\prime \prime},\left[x^{\prime},-y^{\prime}\right]=$ $\left[x^{\prime \prime},-y^{\prime \prime}\right]$, it follows that

$$
\begin{equation*}
2 A\left(x^{\prime}-y^{\prime}, x^{\prime \prime}-y^{\prime \prime}\right)=A\left(x^{\prime}, x^{\prime \prime}\right)+A\left(-y^{\prime},-y^{\prime \prime}\right)=A\left(x^{\prime}, x^{\prime \prime}\right)+A\left(y^{\prime}, y^{\prime \prime}\right) \tag{2}
\end{equation*}
$$

The above lemma implies $x^{\prime}+y^{\prime} \perp x^{\prime}-y^{\prime}, x^{\prime \prime}+y^{\prime \prime} \perp x^{\prime \prime}-y^{\prime \prime}$. From this and the fact that $\left[x^{\prime}+y^{\prime}, x^{\prime}-y^{\prime}\right]=\left[x^{\prime \prime}+y^{\prime \prime}, x^{\prime \prime}-y^{\prime \prime}\right]$, we obtain

$$
\begin{equation*}
2 A\left(x^{\prime}, x^{\prime \prime}\right)=A\left(x^{\prime}+y^{\prime}, x^{\prime \prime}+y^{\prime \prime}\right)+A\left(x^{\prime}-y^{\prime}, x^{\prime \prime}-y^{\prime \prime}\right) \tag{3}
\end{equation*}
$$

Finally, the lemma follows from (1), (2), (3).

3. Main Result

Theorem. If $\mu(E)=2^{1 / 2}$, then E is a prehilbert space.
Proof. Since affine transformations preserve B-orthogonality, we can suppose that $(1,0),(0,1) \in S,(1,0) \perp(0,1)$.

Let $x(\theta)=\left(x_{1}(\theta), x_{2}(\theta)\right)$ be the point of S which forms with $(1,0)$ the angle θ, measured in the positive sense, and let $y(\theta)=\left(y_{1}(\theta), y_{2}(\theta)\right)$ be the unique (consequence of Lemma 3) point of S such that $x(\theta) \perp y(\theta)$, $[x(\theta), y(\theta)]=[(1,0),(0,1)]$.

If we prove that

$$
\int_{0}^{\theta} x_{1} d x_{1}+\int_{0}^{\theta} y_{1} d y_{1}=0, \quad \int_{0}^{\theta} x_{2} d x_{2}+\int_{0}^{\theta} y_{2} d y_{2}=0
$$

for every $\theta \in[0,2 \pi)$, then

$$
x_{1}^{2}(\theta)+y_{1}^{2}(\theta)=1, \quad x_{2}^{2}(\theta)+y_{2}^{2}(\theta)=1
$$

Combining these equalities with (Lemma 1)

$$
x_{1}(\theta) y_{2}(\theta)-x_{2}(\theta) y_{1}(\theta)=1
$$

we find

$$
\left[x_{1}(\theta)-y_{2}(\theta)\right]^{2}+\left[x_{2}(\theta)+y_{1}(\theta)\right]^{2}=0
$$

from which it follows that S is the circle $x_{1}{ }^{2}+x_{2}{ }^{2}=1$.
To prove that

$$
\int_{0}^{\theta} x_{k} d x_{k}+\int_{0}^{\theta} y_{k} d y_{k}=0 \quad(k=1,2)
$$

let

$$
\sum_{i=1}^{n}\left\{x_{k}\left(t_{i}\right)\left[x_{k}\left(\theta_{i}\right)-x_{k}\left(\theta_{i-1}\right)\right]+y_{k}\left(s_{i}\right)\left[y_{k}\left(\theta_{i}\right)-y_{k}\left(\theta_{i-1}\right)\right]\right\}
$$

be a sum of Riemann sums for such integrals. If we choose $s_{i}, t_{i} \in\left[\theta_{i-1}, \theta_{i}\right]$ so that

$$
\begin{align*}
& x\left(\theta_{i}\right)-x\left(\theta_{i-1}\right)=\left\|x\left(\theta_{i}\right)-x\left(\theta_{i-1}\right)\right\| y\left(s_{i}\right) \tag{4}\\
& y\left(\theta_{i}\right)-y\left(\theta_{i-1}\right)=-\left\|y\left(\theta_{i}\right)-y\left(\theta_{i-1}\right)\right\| x\left(t_{i}\right)
\end{align*}
$$

the absolute value of the above sum of Riemann sums is less than or equal to

$$
\begin{align*}
& \begin{array}{l}
\sum_{i=1}^{n}\left|\left\|y\left(\theta_{i}\right)-y\left(\theta_{i-1}\right)\right\|-\left\|x\left(\theta_{i}\right)-x\left(\theta_{i-1}\right)\right\|\right| \\
\\
\quad \times \frac{\left|x_{k}\left(\theta_{i}\right)-x_{k}\left(\theta_{i-1}\right) \| y_{k}\left(\theta_{i}\right)-y_{k}\left(\theta_{i-1}\right)\right|}{\left\|x\left(\theta_{i}\right)-x\left(\theta_{i-1}\right)\right\|\left\|y\left(\theta_{i}\right)-y\left(\theta_{i-1}\right)\right\|} \\
\leqslant \sum_{i=1}^{n}\left|\left\|y\left(\theta_{i}\right)-y\left(\theta_{i-1}\right)\right\|-\left\|x\left(\theta_{i}\right)-x\left(\theta_{i-1}\right)\right\|\right|
\end{array}
\end{align*}
$$

since S is in the square with vertices $(\pm 1, \pm 1)$, and thus $\|(a, b)\| \geqslant \max \{a, b\}$.
Consequently, it remains to prove that the last sum is as small as we wish if we choose the partition $\left\{\theta_{0}, \theta_{1}, \ldots, \theta_{n}\right\}$ of $[0, \theta]$ sufficiently fine.

Lemma 3 tells us that

$$
\int_{\theta^{\prime}}^{\theta^{\prime \prime}}\left\{x_{1} d x_{2}-x_{2} d x_{1}\right\}=\int_{\theta^{\prime}}^{\theta^{\prime \prime}}\left\{y_{1} d y_{2}-y_{2} d y_{1}\right\}
$$

for every θ^{\prime} and $\theta^{\prime \prime}$. Let $\left\{\theta_{0}, \theta_{1}, \ldots, \theta_{n}\right\}$ be a partition of $\left[\theta^{\prime}, \theta^{\prime \prime}\right]$ and let
$s_{i}, t_{i} \in\left[\theta_{i-1}, \theta_{i}\right]$ be as in (4). The corresponding Riemann sum of the first integral is

$$
\begin{aligned}
& \sum_{i=1}^{n}\left\{x_{1}\left(s_{i}\right)\left[x_{2}\left(\theta_{i}\right)-x_{2}\left(\theta_{i-1}\right)\right]-x_{2}\left(s_{i}\right)\left[x_{1}\left(\theta_{i}\right)-x_{1}\left(\theta_{i-1}\right)\right]\right\} \\
& \quad=\sum_{i=1}^{n}\left\|x\left(\theta_{i}\right)-x\left(\theta_{i-1}\right)\right\|\left[x_{1}\left(s_{i}\right) y_{2}\left(s_{i}\right)-x_{2}\left(s_{i}\right) y_{1}\left(s_{i}\right)\right] \\
& \quad=\sum_{i=1}^{n}\left\|x\left(\theta_{i}\right)-x\left(\theta_{i-1}\right)\right\| .
\end{aligned}
$$

Analogously, the Riemann sum of the second integral is

$$
\sum_{i=1}^{n}\left\|y\left(\theta_{i}\right)-y\left(\theta_{i-1}\right)\right\|
$$

Therefore, for every $\epsilon>0$ there exists a partition P_{ϵ} of $\left[\theta^{\prime}, \theta^{\prime \prime}\right]$ such that, for every $P=\left\{\theta_{0}, \theta_{1}, \ldots, \theta_{n}\right\}$ finer than P_{ϵ},

$$
\begin{equation*}
\left|\sum_{i=1}^{n} D_{i}\right|<\epsilon \tag{6}
\end{equation*}
$$

where

$$
D_{i}=\left\|x\left(\theta_{i}\right)-x\left(\theta_{i-1}\right)\right\|-\left\|y\left(\theta_{i}\right)-y\left(\theta_{i-1}\right)\right\| .
$$

To show the sum in (5) can be made small, suppose P_{ε} is a partition of $[0, \theta]$ chosen so that, if $P=\left\{\theta_{0}, \theta_{1}, \ldots, \theta_{n}\right\}$ is finer than P_{ϵ},

$$
\left|\sum_{i=1}^{n} D_{i}\right|=\left|\sum_{P_{+}} D_{i}+\sum_{P_{-}} D_{i}\right|<\epsilon
$$

where $P_{+}\left(P_{-}\right)$denotes the set of addends D_{i} which are $\geqslant 0(<0)$.
By virtue of (6) we can refine $P_{-}\left(P_{+}\right)$so that the sum of D_{i} 's relative to it is less than ϵ. Consequently,

$$
\sum_{P_{+}} D_{i}<2 \epsilon, \quad\left(\sum_{P_{-}} D_{i}<2 \epsilon\right)
$$

and therefore

$$
\sum_{i=1}^{n}\left|D_{i}\right|=\sum_{P_{+}} D_{i}-\sum_{P_{-}} D_{i}<4 \epsilon
$$

for every P finer than P_{ϵ}.

References

1. G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172.
2. R. C. James, Orthogonality and linear functionals in normed linear spaces, Trarks, Amer. Math. Soc. 61 (1947), 265-292.
3. R. C. James, Inner products in normed linear spaces, Bull. Amer. Math. Soc. 53 (1947), 559-566.
4. J. L. Joly, Caractérisation d'espaces hilbertiens au moyen de la constante rectangle, J. Approximation Theory 2 (1969), 301-311.
